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Executive Summary 
 

The Geodetic Reference System of 1980 (GRS80), a model of an ellipsoid of revolution and its 
implied normal gravity field, has been used in the geodetic community for decades. However, its 
defining parameters of semi-major axis (𝑎𝑎), gravity-mass constant (𝐺𝐺𝐺𝐺), dynamic form factor 
(𝐽𝐽2) and angular velocity (𝜔𝜔), make the computation of derivative values, particularly concerning 
the geometric qualities of the ellipsoid, somewhat onerous. The National Geodetic Survey (NGS) 
will adopt a modified definition of GRS80 for use in the forthcoming modernized National 
Spatial Reference System (NSRS). In that modified definition, the value for the inverse 
flattening of the ellipsoid, 𝑓𝑓−1, is given an exact value, rather than 𝐽𝐽2. 

Several tests were performed using this modified definition, and all conclusively showed that this 
modification only has a negligible impact. This memorandum describes the reasoning behind this 
decision, its implications, and its implementation.   



1 
 

1 Introduction and the need for exactly four ellipsoid parameters 
When NGS initiated efforts toward a modernized NSRS, one of the earliest decisions was that 
GRS801 would be the reference ellipsoid for geometric and geopotential work (NGS 2021a, 
NGS 2021b). This memorandum outlines the policy and equations that NGS will adopt regarding 
the practical adoption of GRS80 in the modernized NSRS, including what values will be stored, 
how many digits, and what equations will be used to compute derivative values on the fly. 
 
As per the original definition (Moritz, 1980), the GRS80 ellipsoid was defined by the 
International Association of Geodesy (IAG) through four parameters, considered exact, as shown 
in Table 1. 
 

Table 1:  The official defining parameters of GRS80 

Name Symbol Value Units 
Semi-major axis 𝑎𝑎 6378137 𝑚𝑚 
Gravity-mass constant 𝐺𝐺𝐺𝐺 3986005 × 108  𝑚𝑚3/𝑠𝑠2 
Dynamic form factor 𝐽𝐽2 108263 × 10−8 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠 
Angular velocity  

 
𝜔𝜔 7292115 × 10−11 𝑠𝑠−1 

These four values contain the necessary information to calculate any other derivative value 
(geometric or geopotential) related to a reference ellipsoid. While these four are not the only set 
of four ellipsoid parameters for which this can be stated, they are the official parameters defined 
by the IAG for GRS80. 
 
Storing only these four values and computing derivative values on the fly is the most rigorous 
way to adopt and use GRS80. The equations defining any derived value cannot yield a number 
with an exact value (that is, all digits are known). This means that if one adopted a fifth value as 
“known” without adopting that fifth value to an infinite number of digits, one would be setting 
up a non-uniqueness conflict in other downstream derived values. 
 
By way of example, consider one of the most commonly adopted values outside of the original 
four:  the (unitless) inverse flattening (𝑓𝑓−1) of the ellipsoid. When derived from 𝑎𝑎, 𝐺𝐺𝐺𝐺,  
𝐽𝐽2 and 𝜔𝜔, (see Appendices A and B) the value of the inverse flattening (to 25 of its infinite digits) 
is: 
 

𝑓𝑓−1 = 298.2572221008827112431628366 … … (1) 
 
In practice, the inverse flattening is often taken as the following exact value. We provide 
subscript 𝑎𝑎 to differentiate between GRS80’s true inverse flattening and this approximation. 
 

(𝑓𝑓−1)𝑎𝑎 = 298.257222101 (2) 

 
1 The authors acknowledge the various acronyms used for the “Geodetic Reference System of 1980” since its 
introduction. Although the International Association of Geodesy (IAG’s) Geodesists’ Handbook uses “GRS 80”, the 
International Organization for Standardization (ISO) uses “GRS80”. Because NGS has been increasingly complying 
with international standards of late, we will use “GRS80.” 



 
Now, let us compute the normal gravity potential on the ellipsoid’s surface, 𝑈𝑈0, two ways. First, 
from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔 (see Appendix C) and then from 𝑎𝑎, 𝐺𝐺𝐺𝐺, (𝑓𝑓−1)𝑎𝑎 and 𝜔𝜔 (see Appendix D). 
The results are below. We continue to use subscript 𝑎𝑎 to indicate a value different from GRS80. 
 
From 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔 : 𝑈𝑈0 = 62636860.850046𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏… 𝑚𝑚2/𝑠𝑠2 (3a) 
From 𝑎𝑎, 𝐺𝐺𝐺𝐺, (𝑓𝑓−1)𝑎𝑎 and 𝜔𝜔 : (𝑈𝑈0)𝑎𝑎 = 62636860.850046𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟏… 𝑚𝑚2/𝑠𝑠2 (3b) 

 
What (3) demonstrates is that adopting five, not four, parameters for a reference ellipsoid results 
in different derived values, depending on which four starting values are used. This is the non-
uniqueness conflict mentioned above. Although the differences for the above values may be just 
beyond the limit of typical double precision (nominally 15 digits), they differ nonetheless. 
 
Whether or not this non-uniqueness is an issue is a matter of accuracy needs. In the 𝑈𝑈0 example 
above, the difference is on the order of 10−8 𝑚𝑚2/𝑠𝑠2, which translates (via Bruns’ equation2) to 
approximately 10−7 𝑚𝑚 (0.0001 mm) in the determination of a normal geopotential surface in 
space, which is likely to be negligible for most applications. 
 
However, just because one example does not yield any numeric issues is not a good reason to 
adopt five ellipsoid parameters and set oneself up for non-uniqueness issues. Consider, for 
example, the definition of the WGS 84 ellipsoid by the National Geospatial-Intelligence Agency 
(NGA, 2014). Originally, it was defined by adopting exact values for 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐶𝐶∗2,0 and 𝜔𝜔. 
(Although NGA uses the notation 𝐶𝐶2,0, this is technically incorrect and should be 𝐶𝐶∗2,0; see Smith 
(1998)). In the late 1990s, a decision was made (NIMA, 2004) to adopt 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝑓𝑓−1 and 𝜔𝜔, 
dropping 𝐶𝐶∗2,0 as a defining parameter of the WGS 84 ellipsoid and thus acknowledging the 
importance of defining only four ellipsoid parameters.  
 
In NGA (2014), there is an unfortunately confusing sentence: “Additionally, there are now 
distinct values for the 𝐶𝐶2,0 term, one dynamically derived as part of the WGS 84 Earth 
Gravitational Models and the other geometric, implied by the defining parameters [of the 
reference ellipsoid].” This is misleading because it equates two terms that are not equal: the 2nd 
degree zonal harmonic coefficient of Earth’s external gravitational potential (𝐶𝐶2,0) and the 2nd 
degree zonal harmonic coefficient of the normal gravitational field of the reference ellipsoid 
(𝐶𝐶∗2,0) that is related to 𝐽𝐽2 through the equation 𝐶𝐶∗2,0 = −𝐽𝐽2/√5. Using one term, 𝐶𝐶2,0, to mean 
both coefficients is confusing, and more importantly, incorrect; see Smith (1998). Further, the 
NGA discussion of EGM96 (NGA, 2014), near this sentence was irrelevant, since ultimately the 
𝐶𝐶∗2,0 value of the updated WGS 84 ellipsoid was (as stated in that paragraph) derived from 𝑎𝑎, 
𝐺𝐺𝐺𝐺, 𝑓𝑓−1 and 𝜔𝜔, not related to the EGM96 model at all. 
 
Unfortunately, the non-uniqueness problem is often ignored in practice. Instead, storing and 
using one or more pre-computed derivative values is expected, rather than returning to first 

 
2 Brun’s equation, 𝑁𝑁 = (𝑊𝑊0 − 𝑈𝑈0)/𝛾𝛾, shows the distance from the reference ellipsoid (𝑈𝑈 = 𝑈𝑈0) to the geoid (𝑊𝑊 =
𝑊𝑊0). If the 𝑈𝑈0 value is changed by some small amount (𝛿𝛿𝑈𝑈0) without changing the 𝑊𝑊0 value, then this implies a 
change in that distance. That is, it implies that the reference ellipsoid is in a different location. Specifically, it is 
vertically displaced by 𝛿𝛿𝑈𝑈0/𝛾𝛾, where 𝛾𝛾 is approximately 9.8 𝑚𝑚/𝑠𝑠2.  
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principles every time one is interested in them. The number of such derivative values is 
extensive. However, some values are needed more frequently than others, such as the semi-minor 
axis (𝑏𝑏), flattening (𝑓𝑓), inverse flattening (𝑓𝑓−1), first eccentricity squared (𝑢𝑢2), and normal 
gravity potential on the ellipsoid (𝑈𝑈0). Part of this is simply practical: the 𝑢𝑢2 value is used (with 
𝑎𝑎) in one of the most common geodetic equations, relating geocentric Cartesian (𝑋𝑋𝑋𝑋𝑋𝑋) 
coordinates to geodetic latitude, longitude, and ellipsoid height (𝜙𝜙𝜙𝜙ℎ). To re-compute 𝑢𝑢2 from 𝑎𝑎, 
𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔 (see Appendix B) is much more burdensome than simply storing and using some 
rounded 𝑢𝑢2 or 𝑓𝑓−1 value.  
 
We recognize that storing pre-computed derivative values is both widely done in practice and (if 
one of those is the inverse flattening) makes computing geometric quantities easier. This is what 
led to the change mentioned above to the definition of the WGS 84 ellipsoid, as well as to a 
modified definition of GRS80 at the International Organization for Standardization (ISO, 2018), 
described in the next section. 
 

2 ISO standard for GRS80 
The International Organization for Standardization (ISO) defines GRS80 (ISO, 2018) as a 
geometric ellipsoid with two values, as seen in Table 2. 
 

Table 2:  The official defining parameters of GRS80 in the ISO geodetic registry 

Name Symbol Value Units 
Semi-major axis 𝑎𝑎 6378137 𝑚𝑚 
Inverse flattening  (𝑓𝑓−1)𝐺𝐺𝐺𝐺𝐺𝐺80(𝐼𝐼𝐺𝐺𝐼𝐼) 298.257222101  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠 

 
While the ISO acknowledges (in remarks) that three other values are associated with GRS80 
(𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔), they are not part of the ISO standard. Note that (𝑓𝑓−1)𝐺𝐺𝐺𝐺𝐺𝐺80(𝐼𝐼𝐺𝐺𝐼𝐼) is identical to 
the oft-used (𝑓𝑓−1)𝑎𝑎 value mentioned earlier.  
 
Also, as mentioned earlier, this value of (𝑓𝑓−1)𝐺𝐺𝐺𝐺𝐺𝐺80(𝐼𝐼𝐺𝐺𝐼𝐼) does cause some numerical non-
uniqueness when compared to values relying upon 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔. To provide further insight, 
NGS performed some additional numeric tests using (𝑓𝑓−1) −1

𝐺𝐺𝐺𝐺𝐺𝐺80(𝐼𝐼𝐺𝐺𝐼𝐼) and 𝑓𝑓 . Specifically, NGS 
compared the conversion from latitude, longitude, and ellipsoid height to 𝑋𝑋, 𝑋𝑋, and 𝑋𝑋 
coordinates, using the two versions of 𝑓𝑓−1. To perform this test, a computer program was written 
which computed 𝑋𝑋, 𝑋𝑋, and 𝑋𝑋 in quadruple precision at every combination of latitude, longitude, 
and ellipsoid height in these domains:  −90° ≤ 𝜙𝜙 ≤ +90°, 0° ≤ 𝜙𝜙 ≤ +359°, and −1000 𝑚𝑚 ≤
ℎ ≤ +10,000 𝑚𝑚, in 1-degree and 10-meter increments. The two values, (𝑓𝑓−1) −1

𝐺𝐺𝐺𝐺𝐺𝐺80(𝐼𝐼𝐺𝐺𝐼𝐼) and 𝑓𝑓  
(computed from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2, and 𝜔𝜔 in quadruple precision), were used and the differences in 𝑋𝑋, 𝑋𝑋, 
and 𝑋𝑋 computed for each. The RMS differences in 𝑋𝑋, 𝑋𝑋, and 𝑋𝑋, between the two different 
versions of 𝑓𝑓−1, were 1.5 × 10−9, 1.5 × 10−9, and 7.6 × 10−9meters, respectively. The 
maximum differences in 𝑋𝑋, 𝑋𝑋, and 𝑋𝑋 were 3.2 × 10−9, 3.2 × 10−9, and 9.2 × 10−9 meters, with 
each maximum at latitude −55° and ellipsoid height around −1000 𝑚𝑚. Errors of similar 
magnitude (10-6 millimeters) were also found when computing State Plane coordinates. As 
before, this is only important for certain applications. 
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3 NGS policy for GRS80 in the modernized NSRS 
 
As part of NSRS modernization, NGS has been moving steadily toward adopting various 
international standards. For instance, the four planned reference frames of NATRF2022, 
PATRF2022, CATRF2022, and MATRF2022 will all be derived from ITRF2020, the 
internationally recognized standard for global positioning (UN-GGIM 2015). To continue this 
trend, and after careful consideration of the pros and cons of such a decision, NGS has chosen to 
adopt an alternate form of GRS80 by adopting exactly the 𝑎𝑎, 𝐺𝐺𝐺𝐺 and 𝜔𝜔 values as seen in Table 
1, and further adopting 𝑓𝑓−1 using the ISO standard value as seen in Table 2. This exact set of 
four defining parameters has no name. Officially, it is not GRS80, but from a numerical 
standpoint, it will be identical for all practical purposes. Still, to be as rigorous as possible, we 
will refer to this ellipsoid as GRS80(NGS2022) in this document. Note that although we use 
GRS80(NGS2022) here to identify this ellipsoid, we do not propose it be added to the ISO 
standard, since the geometric quantities are identical to the existing ISO definition of GRS80. To 
formalize our defined ellipsoid, we place its values in Table 3. 
 

Table 3:  The defining parameters of the GRS80(NGS2022) ellipsoid to be used in the 
modernized NSRS 

Name Symbol Value Units 
Semi-major axis  𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) 6378137 𝑚𝑚 
Gravity-mass constant 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) 3986005 × 108  𝑚𝑚3/𝑠𝑠2 
Inverse flattening  (𝑓𝑓−1)𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) 298.257222101 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠 
Angular velocity  𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) 7292115 × 10−11 𝑠𝑠−1 

 
To avoid the non-uniqueness problem, NGS will not adopt a 𝐽𝐽2 value, but will derive it as needed 
from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝑓𝑓−1 and 𝜔𝜔 (see Appendix E). To be clear, the difference is minuscule, as seen 
below:  
 
As defined by GRS80: 𝐽𝐽2 = 0.0010826𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎… (4a) 
From 𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022),  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022),  
(𝑓𝑓−1)𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) and  
𝜔𝜔𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) : 

(𝐽𝐽2)𝐺𝐺𝐺𝐺𝐺𝐺80(𝑁𝑁𝐺𝐺𝐺𝐺2022) = 0.0010826𝟐𝟐𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟐𝟐𝟐𝟐… (4b) 

 
The differences are small and effectively negligible. This approach aligns with the procedures for 
the State Plane Coordinate System of 2022 (Dennis, 2023). 
 
NGS intends to implement the above-defined version of GRS80 in all modernized NSRS 
products and services. However, because “GRS80(NGS2022)” is a lengthy acronym, and the 
small, subtle, and effectively negligible difference with GRS80 may not be significant to most 
users, NGS will label the ellipsoid in our modernized NSRS products and services as “GRS80”. 
Users interested in the difference with GRS80(NGS2022) will be directed to this document. 
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When NGS software needs to compute derivative values from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝑓𝑓−1, and 𝜔𝜔, it will do so 
using equations found in Appendices A, D and E. Specifically, geometric values (𝑓𝑓, 𝑢𝑢2, 𝑏𝑏, 𝐸𝐸, and 
𝑢𝑢′2) are first computed from (11) in Appendix A. After that, 𝑈𝑈0 and 𝐽𝐽2 come from Appendices D 
and E respectively. 
 
Beyond those, only a few other terms of common interest will be mentioned. The value of 𝑞𝑞′0 is 
needed for some additional complex geopotential terms: 

𝑞𝑞0′ = 3�1 +
𝑏𝑏2

𝐸𝐸2
� �1 −

𝑏𝑏
𝐸𝐸

arctan
𝐸𝐸
𝑏𝑏�

− 1 (5) 

 
Each zonal harmonic of the normal gravity potential field beyond 𝐽𝐽2 may be computed through 
(6), and the normal gravity values at equator and pole come from (7) and (8). 
 

𝐽𝐽2𝑛𝑛 = (−1)𝑛𝑛+1
3(𝑢𝑢2)𝑛𝑛

(2𝑢𝑢 + 1)(2𝑢𝑢 + 3) �1 − 𝑢𝑢 + 5𝑢𝑢
𝐽𝐽2
𝑢𝑢2�

     ∀ 𝑢𝑢 ≥ 2 (6) 

Normal gravity on the surface 
of the ellipsoid at the equator 𝛾𝛾𝑎𝑎 =

𝐺𝐺𝐺𝐺
𝑎𝑎𝑏𝑏

�1 −𝑚𝑚 −
𝑚𝑚
6
𝑢𝑢′𝑞𝑞0′

𝑞𝑞0
� (7) 

Normal gravity on the surface 
of the ellipsoid at the poles 𝛾𝛾𝑏𝑏 =

𝐺𝐺𝐺𝐺
𝑎𝑎2

�1 +
𝑚𝑚
3
𝑢𝑢′𝑞𝑞0′

𝑞𝑞0
� (8) 

 
In (6) through (8), the values 𝑚𝑚 and 𝑞𝑞0 come from Appendix E and Appendix B, respectively. 
The above list of equations is meant to be partial. As other related quantities are needed, NGS 
software can be expanded without expanding this document. 
 

4 Summary 

NGS is modernizing the NSRS and, as part of that, has relied upon the GRS80 ellipsoid for all 
geometric and geopotential computations requiring a reference ellipsoid. However, GRS80 was 
defined using four parameters (upon 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2, and 𝜔𝜔) that do not easily lend themselves to the 
vast majority of geodetic computations, namely geometric ones. NGS frequently needs the 
inverse flattening (𝑓𝑓−1) or the first eccentricity squared (𝑢𝑢2) for geometric computations. Still, 
these values require a not-insignificant computational burden to correctly re-compute from 𝑎𝑎, 
𝐺𝐺𝐺𝐺, 𝐽𝐽2, and 𝜔𝜔. To avoid that burden, and avoid a problem of non-uniqueness, and align with the 
ISO standard, NGS has chosen to adopt an alternative form of GRS80, which we have called 
GRS80(NGS2022), whose four defining parameters are 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝑓𝑓−1 and 𝜔𝜔, where 𝑎𝑎, 𝐺𝐺𝐺𝐺, and 𝜔𝜔 
are identical to the original definition of GRS80, and 𝑓𝑓−1 has been set exactly to the widely-used 
value of 298.257222101, matching the ISO standard. Derived geometric values will therefore be 
easily computed from 𝑎𝑎 and 𝑓𝑓−1, without the more cumbersome approach of returning to first 
principles with 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔. 
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If 𝒂𝒂 and 𝒃𝒃 are given: If 𝒂𝒂 and 𝒇𝒇 are given: If 𝒂𝒂 and 𝒇𝒇−𝟏𝟏 are given: 
𝑏𝑏 = 𝑏𝑏 (9a) 𝑏𝑏 = 𝑎𝑎(1 − 𝑓𝑓) (10a) 𝑏𝑏 = 𝑎𝑎(1 −

1
𝑓𝑓−1

) (11a) 

𝑓𝑓 =
𝑎𝑎 − 𝑏𝑏
𝑎𝑎

 (9b) 𝑓𝑓 = 𝑓𝑓 (10b) 𝑓𝑓 =
1
𝑓𝑓−1

 (11b) 

𝑓𝑓−1 =
𝑎𝑎

𝑎𝑎 − 𝑏𝑏
 (9c) 𝑓𝑓−1 =

1
𝑓𝑓

 (10c) 𝑓𝑓−1 = 𝑓𝑓−1 (11c) 

𝑢𝑢2 =
𝑎𝑎2 − 𝑏𝑏2

𝑎𝑎2
 (9d) 𝑢𝑢2 = 2𝑓𝑓 − 𝑓𝑓2 (10d) 𝑢𝑢2 =

2𝑓𝑓−1 − 1
(𝑓𝑓−1)2  (11d) 

𝐸𝐸 = �𝑎𝑎2 − 𝑏𝑏2 (9e) 𝐸𝐸 = 𝑎𝑎�2𝑓𝑓 − 𝑓𝑓2 (10e) 𝐸𝐸 = 𝑎𝑎�
2𝑓𝑓−1 − 1

(𝑓𝑓−1)2  (11e) 

𝑢𝑢′2  =
𝑎𝑎2 − 𝑏𝑏2

𝑏𝑏2
 (9f) 𝑢𝑢′2  =

1
(1 − 𝑓𝑓)2 − 1 (10f) 𝑢𝑢′2  =

2𝑓𝑓−1 − 1
(𝑓𝑓−1 − 1)2 (11f) 

 

 

If 𝒂𝒂 and 𝒆𝒆𝟐𝟐 are given: If 𝒂𝒂 and 𝑬𝑬 are given: If 𝒂𝒂 and 𝒆𝒆′𝟐𝟐 are given: 

𝑏𝑏 = 𝑎𝑎�1 − 𝑢𝑢2 (12a) 𝑏𝑏 = 𝑎𝑎�1 −
𝐸𝐸2

𝑎𝑎2
 (13a) 𝑏𝑏 =

𝑎𝑎
�1 + 𝑢𝑢′2 

 (14a) 

𝑓𝑓 = 1 −�1 − 𝑢𝑢2 (12b) 𝑓𝑓 = 1 −�1 −
𝐸𝐸2

𝑎𝑎2
 (13b) 𝑓𝑓 = 1 −

1
�1 + 𝑢𝑢′2 

 (14b) 

𝑓𝑓−1 =
1

1 − √1 − 𝑢𝑢2
 (12c) 𝑓𝑓−1 =

1

1 −�1 − 𝐸𝐸2
𝑎𝑎2

 (13c) 𝑓𝑓−1 =
1 + 𝑢𝑢′2 + �1 + 𝑢𝑢′2 

𝑢𝑢′2
 (14c) 

 

6 Appendices 
 

6.1 Appendix A:  Converting common geometric values between one another 
 
The geometric qualities (size and shape) of an ellipsoid of revolution can be uniquely described 
by giving just two terms: one to provide scale and one to provide shape. However, there are 
numerous geometric terms of interest, all interrelated. For this memorandum, we restrict 
ourselves to the semi-major axis (𝑎𝑎), semi-minor axis (𝑏𝑏), flattening (𝑓𝑓), inverse flattening (𝑓𝑓−1), 
first eccentricity squared (𝑢𝑢2), linear eccentricity (𝐸𝐸) and second eccentricity squared (𝑢𝑢′2).  

We provide below the equations necessary to compute any of the aforementioned geometric 
terms from any two given terms, under the assumption that the semi-minor axis (𝑎𝑎) will always 
be one of the two given terms. 



𝑢𝑢2 = 𝑢𝑢2 (12d) 𝑢𝑢2 =
𝐸𝐸2

𝑎𝑎2
 (13d) 𝑢𝑢2 =

𝑢𝑢′2

1 + 𝑢𝑢′2
 (14d) 

𝐸𝐸 = 𝑎𝑎�𝑢𝑢2 (12e) 𝐸𝐸 = 𝐸𝐸 (13e) 𝐸𝐸 = 𝑎𝑎�
𝑢𝑢′2

1 + 𝑢𝑢′2
 (14e) 

𝑢𝑢′2  =
𝑢𝑢2

1 − 𝑢𝑢2
 (12f) 𝑢𝑢′2  =

𝐸𝐸2

𝑎𝑎2 − 𝐸𝐸2
 (13f) 𝑢𝑢′2  = 𝑢𝑢′2 (14f) 

 

 

6.2 Appendix B:  Computing geometric values from a, GM, J2 and ω 
 

In order to derive any of the geometric terms from the previous section (𝑏𝑏, 𝑓𝑓, 𝑓𝑓−1, 𝑢𝑢2, 𝐸𝐸 or 𝑢𝑢′2), 
from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔 we follow the guidance found in Moritz (1980), where the first step is 
computing the first eccentricity (𝑢𝑢2). In that paper, the recommendation is to solve for 𝑢𝑢2 by 
iterating on (15), below. Note we have expressed 𝑢𝑢3 as (𝑢𝑢2)3/2 in order to maintain use of 𝑢𝑢2 as 
the iterated variable in (15). 

𝑢𝑢2 = 3𝐽𝐽2 +
4

15
𝜔𝜔2𝑎𝑎3

𝐺𝐺𝐺𝐺
(𝑢𝑢2)3/2

2𝑞𝑞0
 (15) 

 

The common formula for 𝑞𝑞0 (Heiskanen and Moritz, 1967, eq. 2-58) is found in (16).  

𝑞𝑞0 =
1
2 �
�1 + 3

𝑏𝑏2

𝐸𝐸2
� arctan

𝐸𝐸
𝑏𝑏
− 3

𝑏𝑏
𝐸𝐸�

 (16) 

 

To iterate on 𝑢𝑢2 in (15) it will be useful to write 𝑞𝑞0 in terms of 𝑢𝑢2. To do so, we rely on the 
relationship between 𝑏𝑏 and 𝐸𝐸 and 𝑢𝑢2 as found in (12a) and (12e). Plugging (12a) and (12e) into 
(16) yields the alternate version of 𝑞𝑞0 seen in (17). 

𝑞𝑞0 =
1
2 �
�1 + 3

1 − 𝑢𝑢2

𝑢𝑢2
� arctan�

𝑢𝑢2

1 − 𝑢𝑢2
− 3�

1 − 𝑢𝑢2

𝑢𝑢2 � (17) 

 

The iteration proceeds by choosing an initial value of 𝑢𝑢2, plugging that into (17) to get an initial 
value of 𝑞𝑞0, which is then plugged, with the initial value of 𝑢𝑢2, into (15) to arrive at an updated 
value of 𝑢𝑢2. The iteration proceeds until the desired accuracy of 𝑢𝑢2 is achieved. 

Once 𝑢𝑢2 is known to the desired accuracy, other geometric values may be computed using (12). 
Note that this iterative solution may not yield values at double precision accuracy (nominally 15 
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digits) even when double precision computations are used. For example, 𝑓𝑓−1 = 
298.257222100883 to 15 digits, but a double precision iterative solution of 𝑢𝑢2 will typically not 
yield this value when computed using (12). The last three digits can vary depending on when and 
how iteration is terminated. However, double precision iteration will reliably yield 𝑓𝑓−1 = 
298.257222101, which is likely the reason this 12-digit value was widely adopted in the first 
place. To reliably get more digits requires quadruple precision or other high-precision 
computation methods. Because most algorithms are limited to double precision, it is impractical 
to routinely compute 𝑢𝑢2 and its derived values to full double precision in most software. This 
limitation is one of the main reasons  𝑓𝑓−1 = 298.257222101 was adopted as an exact defining 
value for GRS80 (together with its long history of usage in the geospatial community). 

 

6.3 Appendix C:  Computing U0 from a, GM, J2 and ω 
 

To derive the normal gravity potential on the ellipsoid’s surface (𝑈𝑈0) from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝐽𝐽2 and 𝜔𝜔 we 
follow the guidance found in Moritz (1980), which is to first derive 𝑢𝑢2 using the method in 
Appendix B.  

Once we have 𝑢𝑢2, we need to derive 𝐸𝐸 and 𝑏𝑏, as shown in (12). Then, the formula for 𝑈𝑈0, which 
happens to be exact (Moritz 1980; see also Heiskanen and Moritz, equation 2-61, noting that 
𝑢𝑢′ = 𝐸𝐸/𝑏𝑏), is: 

𝑈𝑈0 =
𝐺𝐺𝐺𝐺
𝐸𝐸

arctan
𝐸𝐸
𝑏𝑏

+
1
3
𝜔𝜔2𝑎𝑎2 (18) 

 
6.4 Appendix D:  Computing U0 from a, GM, f-1 and ω 
 

To derive the normal gravity potential on the ellipsoid’s surface (𝑈𝑈0) from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝑓𝑓−1 and 𝜔𝜔 we 
begin by computing 𝐸𝐸 and 𝑏𝑏 from 𝑎𝑎 and 𝑓𝑓−1, using (11), above. Note that there is no iteration 
involved. Once we have 𝐸𝐸 and 𝑏𝑏, we apply (18), above. 

 
6.5 Appendix E:  Computing J -1

2 from a, GM, f  and ω 
 

To show how to compute the dynamic form factor of the reference ellipsoid (𝐽𝐽2) from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 
𝑓𝑓−1 and 𝜔𝜔 we must first turn to Heiskanen and Moritz (1967), and perform a few derivations. 
We begin by comparing equation (2-88) with the unnumbered equation between (2-91) and 
(2-92), which allows us to write: 

9 

𝐴𝐴2
𝑃𝑃2(cos𝜃𝜃)

𝑟𝑟3
= −

𝐺𝐺𝐺𝐺
𝑟𝑟
𝐽𝐽2 �

𝑎𝑎
𝑟𝑟
�
2
𝑃𝑃2(cos𝜃𝜃) (19) 
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This leads to the following equation: 

𝐽𝐽2 =
−𝐴𝐴2
𝐺𝐺𝐺𝐺𝑎𝑎2

 (20) 

 

The equation for 𝐴𝐴2 is provided in (ibid) above equation (2-90): 

𝐴𝐴2 = −
1
3
𝐺𝐺𝐺𝐺𝐸𝐸2 �1 −

2
15

𝑚𝑚𝑢𝑢′
𝑞𝑞0

� (21) 

 
Where the term 𝑞𝑞0is found earlier in (16) and 𝑚𝑚 is: 
 

𝑚𝑚 =
𝜔𝜔2𝑎𝑎2𝑏𝑏
𝐺𝐺𝐺𝐺

 (22) 

 
Therefore, to compute 𝐽𝐽2 from 𝑎𝑎, 𝐺𝐺𝐺𝐺, 𝑓𝑓−1 and 𝜔𝜔 we first compute 𝑏𝑏, 𝐸𝐸 and 𝑢𝑢′ from 𝑎𝑎 and 𝑓𝑓−1 
using (11). These are then used to compute 𝑚𝑚 and 𝑞𝑞0 in (22) and (16), which are used to 
compute 𝐴𝐴2 from (21) which finally is used to compute 𝐽𝐽2 from (20).    
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